-
Notifications
You must be signed in to change notification settings - Fork 4.4k
Description
error log | 日志或报错信息 | ログ
D:\ProgramData\anaconda3\envs\bridgedepth\lib\site-packages\torch\jit_trace.py:1307: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error:
Tensor-likes are not close!
Mismatched elements: 30631 / 30720 (99.7%)
Greatest absolute difference: 3.666351318359375 at index (0, 2, 11, 109) (up to 1e-05 allowed)
Greatest relative difference: 23.89518081229656 at index (0, 11, 12, 12) (up to 1e-05 allowed)
_check_trace(
pnnxparam = ./onnx/bridge_rvc_pretrain_model_ncnn.pnnx.param
pnnxbin = ./onnx/bridge_rvc_pretrain_model_ncnn.pnnx.bin
pnnxpy = ./onnx/bridge_rvc_pretrain_model_ncnn_pnnx.py
pnnxonnx = ./onnx/bridge_rvc_pretrain_model_ncnn.pnnx.onnx
ncnnparam = ./onnx/bridge_rvc_pretrain_model_ncnn.ncnn.param
ncnnbin = ./onnx/bridge_rvc_pretrain_model_ncnn.ncnn.bin
ncnnpy = ./onnx/bridge_rvc_pretrain_model_ncnn_ncnn.py
fp16 = 0
optlevel = 0
device = cpu
inputshape = [1,3,96,160]f32,[1,3,96,160]f32
inputshape2 =
customop =
moduleop =
############# pass_level0
inline module = bridgedepth.bridgedepth.BridgeDepth
inline module = bridgedepth.monocular.depth_anything.DPTHead
inline module = bridgedepth.monocular.depth_anything.FeatureFusionBlock
inline module = bridgedepth.monocular.depth_anything.ResidualConvUnit
inline module = bridgedepth.monocular.dinov2.layers.attention.MemEffAttention
inline module = bridgedepth.monocular.dinov2.layers.block.NestedTensorBlock
inline module = bridgedepth.monocular.dinov2.layers.layer_scale.LayerScale
inline module = bridgedepth.monocular.dinov2.layers.mlp.Mlp
inline module = bridgedepth.monocular.dinov2.layers.patch_embed.PatchEmbed
inline module = torch.nn.modules.linear.Identity
inline module = bridgedepth.bridgedepth.BridgeDepth
inline module = bridgedepth.monocular.depth_anything.DPTHead
inline module = bridgedepth.monocular.depth_anything.FeatureFusionBlock
inline module = bridgedepth.monocular.depth_anything.ResidualConvUnit
inline module = bridgedepth.monocular.dinov2.layers.attention.MemEffAttention
inline module = bridgedepth.monocular.dinov2.layers.block.NestedTensorBlock
inline module = bridgedepth.monocular.dinov2.layers.layer_scale.LayerScale
inline module = bridgedepth.monocular.dinov2.layers.attention.MemEffAttention
inline module = bridgedepth.monocular.dinov2.layers.block.NestedTensorBlock
inline module = bridgedepth.monocular.dinov2.layers.layer_scale.LayerScale
inline module = bridgedepth.monocular.dinov2.layers.layer_scale.LayerScale
inline module = bridgedepth.monocular.dinov2.layers.mlp.Mlp
inline module = bridgedepth.monocular.dinov2.layers.patch_embed.PatchEmbed
inline module = torch.nn.modules.linear.Identity
context | 编译/运行环境 | バックグラウンド
ncnn 1.0.20250503
pnnx 20251016
卡在pass_level0一般是什么原因