Skip to content

使用nezha_base_www模型,得到的嵌入向量为nan #227

@yixiu00001

Description

@yixiu00001

#引用nezha模型
from transformers import NezhaModel, NezhaConfig

self.config = BertConfig.from_pretrained(config_path)
self.bert_module = NezhaModel.from_pretrained(bert_dir, config=self.config)
bert_outputs = self.bert_module(input_ids=x,
attention_mask=mask,
token_type_ids=segs,
output_hidden_states =True)

bert_outputs结果中,多层结果是nan,不知道是什么原因。
BaseModelOutputWithPoolingAndCrossAttentions(last_hidden_state=tensor([[[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
...,
[nan, nan, nan, ..., nan, nan, nan]], device='cuda:0'), hidden_states=(tensor([[[ 0.5742, -0.2564, 0.4186, ..., 0.8307, -1.6965, 0.6848],
[-0.6152, 0.1826, -1.1161, ..., 0.6985, -3.4405, 1.4675],
[-0.2423, 0.8284, 0.5155, ..., 1.0843, -1.4233, 0.5122],
...,
[-0.2828, -0.2603, -0.6676, ..., 0.5609, -2.0621, 0.5314],

     [ 0.5203,  0.3228, -0.4273,  ..., -0.2345, -0.1468, -0.2845],
     [ 0.5203,  0.3228, -0.4273,  ..., -0.2345, -0.1468, -0.2845],
     [ 0.5203,  0.3228, -0.4273,  ..., -0.2345, -0.1468, -0.2845]]],
   device='cuda:0'), tensor([[[nan, nan, nan,  ..., nan, nan, nan],
     [nan, nan, nan,  ..., nan, nan, nan],
     [nan, nan, nan,  ..., nan, nan, nan],
     ...,
   
     [nan, nan, nan,  ..., nan, nan, nan],
     [nan, nan, nan,  ..., nan, nan, nan]]], device='cuda:0'),), past_key_values=None, attentions=None, cross_attentions=None)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions