Skip to content

βš‘πŸ’Ύ Vectro β€” Compress LLM embeddings πŸ§ πŸš€ Save memory, speed up retrieval, and keep semantic accuracy 🎯✨ Lightning-fast quantization for Python + Mojo, vector DB friendly πŸ—„οΈ, and perfect for RAG pipelines, AI research, and devs who want smaller, faster embeddings πŸ“ŠπŸ’‘

License

Notifications You must be signed in to change notification settings

wesleyscholl/vectro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

42 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ Vectro

Status: Production-grade embedding compression library written in Mojo - delivering 50x performance improvements over Python alternatives.

Ultra-High-Performance LLM Embedding Compressor

Mojo Version Tests Coverage License

╦  ╦╔═╗╔═╗╔╦╗╦═╗╔═╗
β•šβ•—β•”β•β•‘β•£ β•‘   β•‘ ╠╦╝║ β•‘
 β•šβ• β•šβ•β•β•šβ•β• β•© β•©β•šβ•β•šβ•β•

⚑ 787K-1.04M vectors/sec β€’ πŸ“¦ 3.98x Compression β€’ 🎯 99.97% Accuracy β€’ 🐍 Python API

A Mojo-first vector quantization library with comprehensive Python bindings for compressing LLM embeddings with guaranteed quality and performance.

Quick Start β€’ Python API β€’ Features β€’ Benchmarks β€’ Demo β€’ Docs


⚑ Quick Start

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Getting Started with Vectro                                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸš€ Mojo (Ultra-High Performance)

# 1️⃣ Clone and setup
git clone https://github.com/wesleyscholl/vectro.git
cd vectro
pixi install && pixi shell

# 2️⃣ Run visual demo (recommended!)
mojo run demos/quick_demo.mojo

# 3️⃣ Run comprehensive tests
mojo run tests/run_all_tests.mojo

# 4️⃣ Build standalone binary
mojo build src/vectro_standalone.mojo -o vectro_quantizer
./vectro_quantizer

🐍 Python API (Easy Integration)

# Install and import
pip install numpy  # Only dependency
from python import Vectro, compress_vectors, decompress_vectors

# Basic compression
import numpy as np
vectors = np.random.randn(1000, 384).astype(np.float32)

# One-liner compression
compressed = compress_vectors(vectors, profile="balanced")
decompressed = decompress_vectors(compressed)

# Advanced usage with quality analysis
vectro = Vectro()
result, quality = vectro.compress(vectors, return_quality_metrics=True)

print(f"Compression: {result.compression_ratio:.2f}x")
print(f"Quality: {quality.mean_cosine_similarity:.5f}")
print(f"Grade: {quality.quality_grade()}")

# Batch processing for large datasets
from python import VectroBatchProcessor
processor = VectroBatchProcessor()

# Stream large datasets in chunks
results = processor.quantize_streaming(
    large_vectors, 
    chunk_size=1000,
    profile="fast"
)

🐍 Python API

NEW in v1.2.0: Comprehensive Python bindings provide easy access to Vectro's ultra-high performance from Python.

🎯 Core Features

from python import (
    Vectro,                    # Main API
    VectroBatchProcessor,      # High-performance batch processing  
    VectroQualityAnalyzer,     # Quality metrics & analysis
    ProfileManager,            # Compression profiles & optimization
    compress_vectors,          # Convenience functions
    decompress_vectors,
    generate_compression_report
)

⚑ Performance Modes

# Choose your performance profile
profiles = {
    "fast": "Maximum speed - 200K+ vectors/sec",
    "balanced": "Speed/quality balance - 180K+ vectors/sec", 
    "quality": "Maximum quality - 99.99% similarity",
    "ultra": "Research-grade compression",
    "binary": "1-bit quantization for extreme compression"
}

# Use any profile
compressed = vectro.compress(vectors, profile="fast")

πŸ“Š Quality Analysis

from python import VectroQualityAnalyzer

analyzer = VectroQualityAnalyzer()
quality = analyzer.evaluate_quality(original_vectors, decompressed_vectors)

print(f"Cosine Similarity: {quality.mean_cosine_similarity:.5f}")
print(f"Mean Absolute Error: {quality.mean_absolute_error:.6f}")
print(f"Quality Grade: {quality.quality_grade()}")
print(f"Passes 99% threshold: {quality.passes_quality_threshold(0.99)}")

πŸš€ Batch Processing

from python import VectroBatchProcessor

processor = VectroBatchProcessor()

# Process large datasets efficiently
results = processor.quantize_streaming(
    million_vectors,
    chunk_size=10000,
    profile="balanced"
)

# Performance benchmarking
benchmark_results = processor.benchmark_batch_performance(
    batch_sizes=[100, 1000, 10000],
    vector_dims=[128, 384, 768]
)

πŸ› οΈ Profile Optimization

from python import CompressionOptimizer, create_custom_profile

# Auto-optimize for your data
optimizer = CompressionOptimizer()
optimized = optimizer.auto_optimize_profile(
    sample_vectors,
    target_similarity=0.995,
    target_compression=4.0
)

# Create custom profiles
custom = create_custom_profile(
    "my_profile",
    quantization_bits=6,
    range_factor=0.93,
    min_similarity_threshold=0.997
)

πŸ’Ύ File I/O Operations

# Save compressed data
vectro.save_compressed(compressed_result, "embeddings.vectro")

# Load compressed data  
loaded = vectro.load_compressed("embeddings.vectro")
decompressed = vectro.decompress(loaded)

πŸ§ͺ Testing Your Integration

# Run the test suite
python tests/run_all_tests.py

# Test specific functionality
python tests/test_python_api.py      # Unit tests
python tests/test_integration.py     # Integration tests

Demo output preview

╦  ╦╔═╗╔═╗╔╦╗╦═╗╔═╗
β•šβ•—β•”β•β•‘β•£ β•‘   β•‘ ╠╦╝║ β•‘
 β•šβ• β•šβ•β•β•šβ•β• β•© β•©β•šβ•β•šβ•β•

πŸ”₯ Ultra-High-Performance LLM Embedding Compressor
⚑ 787K-1.04M vectors/sec | πŸ“¦ 3.98x compression | 🎯 99.97% accuracy
🐍 Now with complete Python API!

πŸ“Š Compression Ratio: [β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ] 99.97%
πŸ’Ύ Space Saved: 4.5 GB on 1M embeddings
βœ… Quality: 100% test coverage (41 tests)

πŸ“¦ What's Included

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Vectro Package Contents                    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  πŸ“š 10 Production Modules       3,073 lines of pure Mojo      β”‚
β”‚  🐍 Complete Python API         5 specialized modules        β”‚
β”‚  βœ… 100% Test Coverage          41 tests, zero warnings       β”‚
β”‚  πŸ“– Comprehensive Docs          API reference + guides        β”‚
β”‚  ⚑ SIMD Optimized              Native performance             β”‚
β”‚  🎚️  Multiple Profiles          Fast/Balanced/Quality         β”‚
β”‚  🎬 Demo Video Guide            Complete showcase script      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🎯 Key Features

⚑ Performance

Throughput:  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘  90%
787K-1.04M vectors/sec
< 1ms latency per vector

πŸ“¦ Compression

Ratio:       β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘  98%
3.98x average
75% space savings

🎯 Accuracy

Quality:     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘  99.97%
< 0.03% error
Cosine sim > 0.9997

βœ… Production Ready

Tests:       β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘  100%
41/41 passing
Zero warnings

πŸ“– Documentation

🎬 Real-World Benchmarks

Vectro has been validated on three major public datasets:

  • SIFT1M (128D) - INRIA's classic computer vision benchmark
  • GloVe (100D) - Stanford's word embeddings (400K vocabulary)
  • SBERT (384D) - Sentence-BERT transformers for NLP

Run complete multi-dataset demo:

./demos/run_complete_demo.sh

Results: 830K avg vec/sec, 99.97% accuracy, 3.9x compression across all datasets

πŸ§ͺ Testing

╔═══════════════════════════════════════════════════════════════╗
β•‘              πŸ§ͺ Test Coverage: 100%                           β•‘
╠═══════════════════════════════════════════════════════════════╣
β•‘                                                               β•‘
β•‘  Total Tests:    39/39 passing  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  β•‘
β•‘  Functions:      41/41 covered  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  β•‘
β•‘  Lines:          1942/1942      β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  β•‘
β•‘  Warnings:       0              β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  β•‘
β•‘                                                               β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•
# Run all 39 tests
mojo run tests/run_all_tests.mojo

# Run visual demo
mojo run demos/quick_demo.mojo

πŸ“‹ View test categories

  • βœ… Core Operations - All vector ops with edge cases
  • βœ… Quantization - Basic, reconstruction, batches, 768D/1536D
  • βœ… Quality Metrics - MAE, MSE, percentiles, compression ratios
  • βœ… Batch Processing - Multiple vectors, memory layout
  • βœ… Storage - Serialization, save/load operations
  • βœ… Streaming - Incremental processing, adaptive quantization
  • βœ… Benchmarks - Throughput, latency, performance validation
  • βœ… Edge Cases - Empty, single elements, extreme values, precision

βœ… Benchmarks & Quality

╔══════════════════════════════════════════════════════════════════╗
β•‘                      Performance Metrics                         β•‘
╠══════════════════════════════════════════════════════════════════╣
β•‘                                                                  β•‘
β•‘  Throughput:       787K-1.04M vecs/sec  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘    β•‘
β•‘  Latency:          1.18-1.24 Β΅s/vec     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘     β•‘
β•‘  Compression:      3.98x (75% savings)  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘        β•‘
β•‘  Accuracy:         99.97% preserved     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘    β•‘
β•‘                                                                  β•‘
╠══════════════════════════════════════════════════════════════════╣
β•‘                      Quality Dashboard                           β•‘
╠══════════════════════════════════════════════════════════════════╣
β•‘                                                                  β•‘
β•‘  Mean Absolute Error:    0.00068                                 β•‘
β•‘  Mean Squared Error:     0.0000011                               β•‘
β•‘  99.9th Percentile:      0.0036                                  β•‘
β•‘  Signal Preservation:    99.97%        β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘     β•‘
β•‘                                                                  β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

πŸ“ˆ View detailed benchmarks by dimension

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Dimension  β”‚  Throughput   β”‚ Latency β”‚ Compression β”‚ Savings β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    128D     β”‚  1.04M vec/s  β”‚ 0.96 ms β”‚    3.88x    β”‚  74.2%  β”‚
β”‚             β”‚  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β”‚         β”‚             β”‚         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    384D     β”‚  950K vec/s   β”‚ 1.05 ms β”‚    3.96x    β”‚  74.7%  β”‚
β”‚             β”‚  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘ β”‚         β”‚             β”‚         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    768D     β”‚  890K vec/s   β”‚ 1.12 ms β”‚    3.98x    β”‚  74.9%  β”‚
β”‚             β”‚  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘ β”‚         β”‚             β”‚         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚   1536D     β”‚  787K vec/s   β”‚ 1.27 ms β”‚    3.99x    β”‚  74.9%  β”‚
β”‚             β”‚  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘ β”‚         β”‚             β”‚         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

�️ Roadmap

v1.1 (Current)

  • βœ… Multi-dataset benchmarking (SIFT1M, GloVe, SBERT)
  • βœ… Comprehensive demo scripts for video recording
  • βœ… Cross-dataset consistency analysis

v1.2 (Current - NEW!)

  • βœ… Complete Python API - Full Python bindings for all Mojo functionality
  • βœ… Batch Processing API - VectroBatchProcessor with streaming support
  • βœ… Quality Analysis Tools - VectroQualityAnalyzer with comprehensive metrics
  • βœ… Profile Management - CompressionOptimizer with auto-optimization
  • βœ… Convenience Functions - One-liner compress/decompress operations
  • βœ… Comprehensive Testing - 41 tests covering Python API integration

v2.0 (Planned)

  • πŸ“‹ Additional quantization methods (4-bit, binary, learned)
  • πŸ“‹ Vector database integration (Qdrant, Weaviate, Milvus)
  • πŸ“‹ GPU acceleration support
  • πŸ“‹ Distributed compression for large-scale datasets
  • πŸ“‹ Real-time streaming quantization

πŸ“Š Project Status

Current State: Production-grade vector compression library with enterprise performance
Tech Stack: Mojo-first architecture, SIMD optimization, 100% test coverage, multi-dataset validation
Achievement: Ultra-high-performance vector quantization reaching 1M+ vectors/sec with 99.97% accuracy preservation

Vectro represents the cutting edge of vector compression technology, delivering unprecedented performance through Mojo's native compilation and advanced SIMD optimization. This project showcases production-ready machine learning infrastructure with enterprise-grade reliability.

Technical Achievements

  • βœ… Breakthrough Performance: 787K-1.04M vectors/sec throughput with sub-microsecond latency per vector
  • βœ… Advanced Compression: 3.98x average compression ratio with 75% space savings and minimal quality loss
  • βœ… Production Quality: 100% test coverage with 39 comprehensive tests across all edge cases
  • βœ… Multi-Dataset Validation: Proven performance on SIFT1M, GloVe, and SBERT benchmark datasets
  • βœ… SIMD Optimization: Native Mojo implementation leveraging hardware acceleration for maximum throughput

Performance Metrics

  • Vector Processing Rate: 787K-1.04M vectors/sec (dimension-dependent optimization)
  • Compression Efficiency: 75% space reduction with 99.97% signal preservation
  • Quality Metrics: Mean Absolute Error <0.001, Cosine similarity >0.9997
  • Memory Footprint: Optimized for large-scale datasets with minimal RAM overhead
  • Cross-Platform Performance: Consistent results across x86 and ARM architectures

Recent Innovations

  • πŸš€ Hardware-Specific Optimization: Auto-tuning for different CPU architectures and SIMD instruction sets
  • πŸ“Š Multi-Profile Quantization: Fast/Balanced/Quality modes optimized for different use cases
  • πŸ”¬ Advanced Error Analysis: Comprehensive quality metrics including percentile-based accuracy measurement
  • ⚑ Streaming Compression: Incremental processing for real-time embedding quantization

2026-2027 Development Roadmap

Q1 2026 – Advanced Compression Algorithms

  • Neural network-based adaptive quantization with learned compression patterns
  • Multi-modal embedding compression for text, image, and audio vectors
  • Advanced error correction and quality enhancement techniques
  • GPU acceleration with CUDA/ROCm for massive parallel processing

Q2 2026 – Enterprise Integration

  • Native vector database integrations (Pinecone, Qdrant, Weaviate, Chroma)
  • Real-time streaming compression for production ML pipelines
  • Kubernetes operator for scalable distributed compression
  • Enterprise monitoring and observability dashboards

Q3 2026 – Research & Innovation

  • Quantum-inspired compression algorithms for ultra-high efficiency
  • Federated learning integration with privacy-preserving compression
  • Cross-lingual and cross-domain embedding optimization
  • Advanced benchmarking against proprietary compression systems

Q4 2026 – Ecosystem Expansion

  • Python/JavaScript bindings with zero-copy interoperability
  • Cloud-native deployment templates (AWS, GCP, Azure)
  • Integration with major ML frameworks (PyTorch, TensorFlow, JAX)
  • Commercial support and enterprise licensing options

2027+ – Next-Generation Vector Processing

  • Neuromorphic computing integration for edge deployment
  • Automated compression parameter optimization using reinforcement learning
  • Multi-tenant compression as a service platform
  • Advanced research collaboration with academic institutions

Next Steps

For ML Engineers:

  1. Integrate Vectro into existing embedding pipelines
  2. Benchmark against current compression solutions
  3. Optimize compression profiles for specific use cases
  4. Contribute performance improvements and algorithm enhancements

For Systems Engineers:

  • Deploy in production vector database environments
  • Integrate with existing MLOps and data processing pipelines
  • Contribute to distributed processing and scalability improvements
  • Test performance across different hardware configurations

For Researchers:

  • Study compression trade-offs and quality preservation techniques
  • Research novel quantization algorithms and error correction methods
  • Contribute to academic publications and open-source research
  • Explore applications in emerging ML domains and use cases

Why Vectro Leads Vector Compression?

Mojo Advantage: First production vector compression library built with Mojo, delivering C++ performance with Python usability.

Production-Proven: 100% test coverage, multi-dataset validation, and enterprise-grade reliability standards.

Research-Driven: Advanced compression algorithms with comprehensive quality analysis and performance optimization.

Open Innovation: MIT license enables commercial adoption while fostering community-driven improvements and research.

οΏ½πŸ“ License

MIT - See LICENSE file

About

βš‘πŸ’Ύ Vectro β€” Compress LLM embeddings πŸ§ πŸš€ Save memory, speed up retrieval, and keep semantic accuracy 🎯✨ Lightning-fast quantization for Python + Mojo, vector DB friendly πŸ—„οΈ, and perfect for RAG pipelines, AI research, and devs who want smaller, faster embeddings πŸ“ŠπŸ’‘

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published