Synapse AI is a cutting-edge medical imaging analysis platform that leverages artificial intelligence to assist healthcare professionals in diagnostic imaging. The platform integrates multiple AI models, including local GPT-OSS-20B support, to provide accurate and efficient medical image analysis.
- Multi-modal Support: DICOM, X-ray, CT, MRI, and ultrasound imaging
- AI-Powered Diagnosis: Advanced machine learning models for automated analysis
- Real-time Processing: Fast and efficient image processing pipeline
- Quality Assurance: Built-in validation and error detection systems
- GPT-OSS-20B: Local AI model for medical text analysis
- MONAI Integration: Medical imaging AI framework
- LangChain Support: Advanced language model chaining
- Custom AI Flows: Specialized workflows for medical diagnosis
- Radiopaedia Integration: Access to comprehensive medical imaging database
- TCIA Support: The Cancer Imaging Archive integration
- XNAT Compatibility: Neuroimaging data management
- OpenI Integration: Open-source medical image search
- RESTful APIs: Comprehensive API endpoints
- TypeScript: Full type safety and modern development
- Real-time Updates: WebSocket support for live data
- Extensible Architecture: Plugin-based system for custom integrations
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ Frontend โ โ AI Services โ โ Data Sources โ
โ (Next.js) โโโโโบโ (GPT-OSS) โโโโโบโ (DICOM/APIs) โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ UI Components โ โ ML Pipeline โ โ Knowledge DB โ
โ (Radix UI) โ โ (MONAI) โ โ (Vector Store)โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
- Node.js 18+
- Python 3.11+
- Git
-
Clone the repository
git clone https://github.com/yourusername/synapse-ai.git cd synapse-ai -
Install dependencies
npm install
-
Set up environment variables
cp .env.example .env.local # Edit .env.local with your configuration -
Install Python dependencies (for AI features)
# Windows .\scripts\install-gpt-oss.ps1 # Linux/macOS chmod +x scripts/install-gpt-oss.sh ./scripts/install-gpt-oss.sh
-
Run the development server
npm run dev
-
Open your browser Navigate to http://localhost:3000
synapse-ai/
โโโ ai/ # AI workflows and prompts
โ โโโ flows/ # AI processing flows
โ โโโ prompts/ # AI prompt templates
โ โโโ tools/ # AI utility tools
โโโ app/ # Next.js app directory
โ โโโ api/ # API routes
โ โโโ medical-labeler/ # Medical labeling interface
โ โโโ components/ # Page components
โโโ components/ # Reusable UI components
โ โโโ ui/ # Base UI components
โโโ docs/ # Documentation
โโโ lib/ # Utility libraries
โโโ scripts/ # Build and deployment scripts
โโโ services/ # External service integrations
โโโ src/ # Additional source files
Create a .env.local file with the following variables:
# AI Configuration
GPT_OSS_MODEL_PATH=./gpt-oss-20b
GPT_OSS_GPU_LAYERS=32
GPT_OSS_THREADS=8
GPT_OSS_CONTEXT_LENGTH=4096
# API Keys (optional)
OPENAI_API_KEY=your_openai_key
GOOGLE_API_KEY=your_google_key
# Database
DATABASE_URL=your_database_url
# External Services
RADIOPAEDIA_API_KEY=your_radiopaedia_key
TCIA_API_KEY=your_tcia_key# Run all tests
npm test
# Test AI functions
npm run test:functions
# Test GPT-OSS integration
npm run test:gpt-oss
# Run specific test suites
npm run test:medical
npm run test:apiPOST /api/analyze- Analyze medical imagesGET /api/reports/:id- Retrieve analysis reportsPOST /api/gpt-oss- GPT-OSS text analysisGET /api/knowledge-base- Access medical knowledge base
// Analyze a medical image
const response = await fetch('/api/analyze', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
imageUrl: 'path/to/image.dcm',
analysisType: 'chest-xray'
})
});
const result = await response.json();We welcome contributions! Please see our Contributing Guide for details.
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
- All medical data is processed locally when possible
- HIPAA compliance considerations built-in
- Secure API endpoints with authentication
- Data encryption in transit and at rest
- Image Processing: < 2 seconds for standard X-rays
- AI Analysis: < 5 seconds for GPT-OSS responses
- API Response Time: < 100ms for most endpoints
- Concurrent Users: Supports 100+ simultaneous users
- Q1 2025: Enhanced DICOM support
- Q2 2025: Mobile application
- Q3 2025: Advanced 3D visualization
- Q4 2025: Multi-language support
This project is licensed under the MIT License - see the LICENSE file for details.
- MONAI - Medical imaging AI framework
- Radiopaedia - Medical imaging reference
- TCIA - Cancer imaging archive
- OpenI - Medical image search
- ๐ง Email: [email protected]
- ๐ฌ Discord: Join our community
- ๐ Documentation: docs.synapse-ai.com
- ๐ Issues: GitHub Issues